61 research outputs found

    ESD Events To Wearable Medical Devices In Healthcare Environments—Part 1: Current Measurements

    Get PDF
    Wearable medical devices are widely used for monitoring and treatment of patients. Electrostatic discharge can render these devices unreliable and cause a temporary or permanent disturbance in their operation. In a healthcare environment, severe electrostatic discharge (ESD) can occur while a patient, lying down or sitting on a hospital bed with a wearable device, discharges the device via a grounded bedframe. To protect the devices from ESD damage, the worst-case discharge conditions in the usage environment need to be identified. Previous studies by authors revealed that such events could be more severe than the conventional human metal model (HMM). However, the impact of various body postures and device location on the body and the severity of the discharge current compared with HMM have not been investigated for healthcare environments. This study is an attempt to address the gap in the literature by investigating severe discharges in such environments and characterizing their current waveforms for three postures (standing on the floor, sitting, and lying down on a hospital bed), two device locations (hand and waist), and four body voltages (2, 4, 6, and 8 kV). This study highlights that the IEC 61000-4-2 standard may not be sufficient for testing wearable medical devices

    Battery Health Estimation for IoT Devices using V-Edge Dynamics

    Get PDF
    Deployments of battery-powered IoT devices have become ubiquitous, monitoring everything from environmental conditions in smart cities to wildlife movements in remote areas. How to manage the life-cycle of sensors in such large-scale deployments is currently an open issue. Indeed, most deployments let sensors operate until they fail and fix or replace the sensors post-hoc. In this paper, we contribute by developing a new approach for facilitating the life-cycle management of large-scale sensor deployments through online estimation of battery health. Our approach relies on so-called V-edge dynamics which capture and characterize instantaneous voltage drops. Experiments carried out on a dataset of battery discharge measurements demonstrate that our approach is capable of estimating battery health with up to 80% accuracy, depending on the characteristics of the devices and the processing load they undergo. Our method is particularly well-suited for the sensor devices, operating dedicated tasks, that have constant discharge during their operation.Peer reviewe

    Data Driven Analysis of Lithium-ion Battery Internal Resistance Towards Reliable State of Health Prediction

    Get PDF
    Accurately predicting the lifetime of lithium-ion batteries in the early stage is critical for faster battery production, tuning the production line, and predictive maintenance of energy storage systems and battery-powered devices. Diverse usage patterns, variability in the devices housing the batteries, and diversity in their operating conditions pose significant challenges for this task. The contributions of this paper are three-fold. First, a public dataset is used to characterize the behavior of battery internal resistance. Internal resistance has non-linear dynamics as the battery ages, making it an excellent candidate for reliable battery health prediction during early cycles. Second, using these findings, battery health prediction models for different operating conditions are developed. The best models are more than 95\% accurate in predicting battery health using the internal resistance dynamics of 100 cycles at room temperature. Thirdly, instantaneous voltage drops due to multiple pulse discharge loads are shown to be capable of characterizing battery heterogeneity in as few as five cycles. The results pave the way toward improved battery models and better efficiency within the production and use of lithium-ion batteries.Peer reviewe

    Sensor Systems for Prognostics and Health Management

    Get PDF
    Prognostics and health management (PHM) is an enabling discipline consisting of technologies and methods to assess the reliability of a product in its actual life cycle conditions to determine the advent of failure and mitigate system risk. Sensor systems are needed for PHM to monitor environmental, operational, and performance-related characteristics. The gathered data can be analyzed to assess product health and predict remaining life. In this paper, the considerations for sensor system selection for PHM applications, including the parameters to be measured, the performance needs, the electrical and physical attributes, reliability, and cost of the sensor system, are discussed. The state-of-the-art sensor systems for PHM and the emerging trends in technologies of sensor systems for PHM are presented

    IoT-Based Prognostics and Systems Health Management for Industrial Applications

    Get PDF
    Prognostics and systems health management (PHM) is an enabling discipline that uses sensors to assess the health of systems, diagnoses anomalous behavior, and predicts the remaining useful performance over the life of the asset. The advent of the Internet of Things (IoT) enables PHM to be applied to all types of assets across all sectors, thereby creating a paradigm shift that is opening up significant new business opportunities. This paper introduces the concepts of PHM and discusses the opportunities provided by the IoT. Developments are illustrated with examples of innovations from manufacturing, consumer products, and infrastructure. From this review, a number of challenges that result from the rapid adoption of IoT-based PHM are identified. These include appropriate analytics, security, IoT platforms, sensor energy harvesting, IoT business models, and licensing approaches.clos
    • 

    corecore